英文原文
Description
The STC89S52 is a low-power, high-performance CMOS 8-bit microcomputer with 4K bytes of Flash Programmable and Erasable Read Only Memory (PEROM) and 128 bytes RAM. The device is manufactured using Atmelrsquo;s high density nonvolatile memory technology and is compatible with the industry standard MCS-51trade; instruction set and pinout. The chip combines a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel STC89S52 is a powerful microcomputer which provides a highly flexible and cost effective solution to many embedded control applications.
Features:
bull; Compatible with MCS-51trade; Products
bull; 4K Bytes of In-System Reprogrammable Flash Memory
bull; Endurance: 1,000 Write/Erase Cycles
bull; Fully Static Operation: 0 Hz to 24 MHz
bull; Three-Level Program Memory Lock
bull; 128 x 8-Bit Internal RAM
bull; 32 Programmable I/O Lines
bull; Two 16-Bit Timer/Counters
bull; Six Interrupt Sources
bull; Programmable Serial Channel
bull; Low Power Idle and Power Down Modes
The STC89S52 provides the following standard features: 4K bytes of Flash, 128 bytes of RAM, 32 I/O lines, two 16-bit timer/counters, a five vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator and clock circuitry. In addition, the STC89S52 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port and interrupt system to continue functioning. The Power Down Mode saves the RAM contents but freezes the oscillator disabling all other chip functions until the next hardware reset.
Block Diagram
Pin Description:
VCC Supply voltage.
GND Ground.
Port 0
Port 0 is an 8-bit open drain bidirectional I/O port. As an output port each pin can sink eight TTL inputs. When is are written to port 0 pins, the pins can be used as high impedance inputs.
Port 0 may also be configured to be the multiplexed loworder address/data bus during accesses to external program and data memory. In this mode P0 has internal pullups.
Port 0 also receives the code bytes during Flash programming, and outputs the code bytes during program verification. External pullups are required during program verification.
Port 1
Port 1 is an 8-bit bidirectional I/O port with internal pullups. The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL) because of the internal pullups.
Port 1 also receives the low-order address bytes during Flash programming and verification.
Port 2
Port 2 is an 8-bit bidirectional I/O port with internal pullups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (IIL) because of the internal pullups.
Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @ DPTR). In this application it uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register.
Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.
Port 3
Port 3 is an 8-bit bidirectional I/O port with internal pullups. The Port 3 output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (IIL) because of the pullups.
Port 3 also serves the functions of various special features of the STC89S52 as listed below:
Port pin |
alternate functions |
P3.0 |
rxd (serial input port) |
P3.1 |
txd (serial output port) |
P3.2 |
^int0 (external interrupt0) |
P3.3 |
^int1 (external interrupt1) |
P3.4 |
t0 (timer0 external input) |
P3.5 |
t1 (timer1 external input) |
P3.6 |
^WR (external data memory write strobe) |
P3.7 |
^rd (external data memory read strobe) |
Port 3 also receives some control signals for Flash programming and verification.
RST
Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device.
ALE/PROG
Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming.
In normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.
If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no eff
剩余内容已隐藏,支付完成后下载完整资料
单片机
英文原文
Description
The STC89S52 is a low-power, high-performance CMOS 8-bit microcomputer with 4K bytes of Flash Programmable and Erasable Read Only Memory (PEROM) and 128 bytes RAM. The device is manufactured using Atmelrsquo;s high density nonvolatile memory technology and is compatible with the industry standard MCS-51trade; instruction set and pinout. The chip combines a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel STC89S52 is a powerful microcomputer which provides a highly flexible and cost effective solution to many embedded control applications.
Features:
bull; Compatible with MCS-51trade; Products
bull; 4K Bytes of In-System Reprogrammable Flash Memory
bull; Endurance: 1,000 Write/Erase Cycles
bull; Fully Static Operation: 0 Hz to 24 MHz
bull; Three-Level Program Memory Lock
bull; 128 x 8-Bit Internal RAM
bull; 32 Programmable I/O Lines
bull; Two 16-Bit Timer/Counters
bull; Six Interrupt Sources
bull; Programmable Serial Channel
bull; Low Power Idle and Power Down Modes
The STC89S52 provides the following standard features: 4K bytes of Flash, 128 bytes of RAM, 32 I/O lines, two 16-bit timer/counters, a five vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator and clock circuitry. In addition, the STC89S52 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port and interrupt system to continue functioning. The Power Down Mode saves the RAM contents but freezes the oscillator disabling all other chip functions until the next hardware reset.
Block Diagram
Pin Description:
VCC Supply voltage.
GND Ground.
Port 0
Port 0 is an 8-bit open drain bidirectional I/O port. As an output port each pin can sink eight TTL inputs. When is are written to port 0 pins, the pins can be used as high impedance inputs.
Port 0 may also be configured to be the multiplexed loworder address/data bus during accesses to external program and data memory. In this mode P0 has internal pullups.
Port 0 also receives the code bytes during Flash programming, and outputs the code bytes during program verification. External pullups are required during program verification.
Port 1
Port 1 is an 8-bit bidirectional I/O port with internal pullups. The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL) because of the internal pullups.
Port 1 also receives the low-order address bytes during Flash programming and verification.
Port 2
Port 2 is an 8-bit bidirectional I/O port with internal pullups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (IIL) because of the internal pullups.
Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @ DPTR). In this application it uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register.
Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.
Port 3
Port 3 is an 8-bit bidirectional I/O port with internal pullups. The Port 3 output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (IIL) because of the pullups.
Port 3 also serves the functions of various special features of the STC89S52 as listed below:
Port pin |
alternate functions |
P3.0 |
rxd (serial input port) |
P3.1 |
txd (serial output port) |
P3.2 |
^int0 (external interrupt0) |
P3.3 |
^int1 (external interrupt1) |
P3.4 |
t0 (timer0 external input) |
P3.5 |
t1 (timer1 external input) |
P3.6 |
^WR (external data memory write strobe) |
P3.7 |
^rd (external data memory read strobe) |
Port 3 also receives some control signals for Flash programming and verification.
RST
Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device.
ALE/PROG
Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming.
In normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.
If desired, ALE operation can be disabled by setting bit 0
剩余内容已隐藏,支付完成后下载完整资料
资料编号:[505907],资料为PDF文档或Word文档,PDF文档可免费转换为Word
以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。