基于信号注入的非有效接地配电系统单相接地故障线识别与区段定位方法外文翻译资料

 2022-11-13 16:20:28

Single Phase-to-Ground Fault Line Identification and Section Location Method for Non-Effectively Grounded Distribution Systems Based on Signal Injection

PAN Zhencun(潘贞存),WANG Chengshan(王成山),CONG Wei(丛伟),ZHANG Fan(张帆)

(1.Key Laboratory of Power System Simulation and Control of Ministry of Education,

Tianjin University,Tianjin 300072,China;

2.School of Electrical Engineering,Shandong University,Jinan 250061,China)

Abstract:

A diagnostic signal current trace detecting based single phase-to-ground fault line identification and section location method for non-effectively grounded distribution systems is presented in this paper.A special diagnostic signal current is injected into the fault distribution system, and then it is detected at the outlet terminals to identify the fault line and at the sectionalizing or branching point along the fault line to locate the fault section.The method has been put into application in actual distribution network and field experience shows that it can identify the fault line and locate the fault section correctly and effectively.

Keyword:

Single phase-to-ground fault (SPGF);signal injection method;fault line identification;fault location;

Most of the 6—66 k V distribution networks in China and many other countries in the world are the socalled small ground current system or non-effectively grounded system, which include ungrounded neutral system, arc suppression coil compensated neutral system and high resistance-grounded neutral system[1,2].The fault line identification and fault section location of single phase-to-ground fault (SPGF) in this kind of system, which would be important to isolate the faulted section, prevent the system from causing other serious faults and reduce the loss of the fault, has always been a stubborn problem since the fault feature is not obvious.A lot of research has been done on this issue.Some methods of identifying fault line have been presented and the corresponding equipments have been developed[3,4].But up to now, most of the developed methods are based on the measurement of zero-sequence current, and this makes their utilization limited in the distribution systems with zero-sequence current transformers (TAs) or three-phase TAs only, which constitute no more than 30%of total distribution systems in China.As for the other 70%distribution systems with only two-phase TAs, the methods based on zero sequence currents are not applicable.As a result, the primitive method, which selects the faulted line by temporarily tripping all the feeders off in sequence, is still used in the real field.

As to fault location, several techniques have been described in the literature.For example, the method based on the sequence components of the fundamental frequency of the post-fault current and voltage[5], and the method based on detecting fault-induced high frequency components on the line[6,7], are proved to be available by computer simulation.But none of the developed methods has been applied to the real power system.Consequently, the traditional method of fault location with visual inspection has to be used[8], which is slow, expensive and unsafe.Apparently, it is unsuitable for the distribution network automation.

This paper presents a signal injection principle of fault line identification and fault section location for distribution networks.It can be used in all kinds of grounded neutral distribution systems and is not restricted by the numbers of TAs since it does not need signal from TAs.Equipments based on the principle are described in detail, and field experience is reported in this paper.

1 Ways to inject the diagnostic signal into the fault distribution system

The developed method identifies the fault line and locates the fault section of a single phase-to-ground fault by detecting the trace of an artificially injected diagnostic signal, which is injected into the fault power system after fault occurrence.There may be many ways to inject the diagnostic signal.Three of them are analyzed as follows.

1.1 Injecting diagnostic signal via fault phase voltage transformer

The method of injecting diagnostic signal via fault phase voltage transformer (TV) is shown in Fig.1.

Fig.1 Injecting signal via TV

Suppose an SPGF fault occurs on phase A in feeder , then the voltage of phase A will drop to 0, and the primary coil of phase A of TV is shortcut by the fault.Thus no induced voltage will be present in its secondary coil.That is to say that the fault phase PT is temporarily in an idle state.The voltage of the other two healthy phases B and C will increase to times its original value.Accordingly, the secondary voltage of phases B and C of TV will increase to 100 V.

As analyzed above, phase A can be discriminated in accordance with the change of the secondary voltage of TV.Now a diagnostic current signal is injected into the secondary coil of phase A of TV as the dashed line (1) in Fig.1.It must be induced to the primary side of TV and form a current loop between the neutral-point of the primary side of TV and the fault point as the dashed line (2) .The injected diagnostic current cannot feed into healthy phases and healthy lines because of the lack of closed current loop.Also, in the multi-branch distribution system, the diagnostic current only feeds into the fault branch.

剩余内容已隐藏,支付完成后下载完整资料


基于信号注入的非有效接地配电系统单相接地故障线识别与区段定位方法

潘贞存,王成山,丛伟,张帆

(1、电力系统仿真与控制教育部重点实验室,天津大学,中国天津300072;

2、山东大学电气工程学院,中国济南250061)

摘要:本文介绍了一种基于单相接地故障线路识别的诊断信号电流轨迹检测和非有效接地配电系统的截面定位方法。将特殊的诊断信号电流注入故障分配系统,然后是在出口终端处检测到识别故障线路,并在断层线的分段或分支点处定位故障部分。该方法已在实际配电网中应用,现场经验表明,该方法可以识别故障线路和正确有效地定位故障部分。

关键词:单相接地故障;信号注入法;故障线路识别;故障定位;

中国和世界上许多其他国家的大多数6-66 k V配电网都是所谓的小型接地电流系统或非有效接地系统,包括不接地的中性系统,消弧线圈补偿中性系统和高电阻接地中性系统[1,2]。这种系统中单相接地故障(SPGF)的故障线路识别和故障区域定位对于隔离故障部分非常重要,可防止系统造成其他严重故障。由于故障特征不明显,故障和减少故障的丢失一直是一个顽固的问题。在这个问题上已经做了大量的研究。提出了一些识别故障线的方法,并开发了相应的设备 [3,4]。但到目前为止,大多数开发的方法都是基于零序电流的测量,这使得它们的利用受限于零序的配电系统仅限电流互感器(TAs)或三相TAs,占中国总配电系统的不超过30%。对于仅有两相TA的其他70%配电系统,基于零序电流的方法不是因此,原始方法仍然在实际领域中使用,该原始方法通过暂时将所有馈线暂时跳闸来选择故障线路。

关于故障定位,文献中已经描述了几种技术。例如,基于故障后电流和电压的基频的序列分量的方法[5],以及基于检测故障引起的高的方法线路[6,7]上的频率分量被证明可以通过计算机模拟获得。但是没有一种已经开发的方法应用于实际电力系统。因此,必须使用传统的故障定位方法和目视检查 [8],速度慢,昂贵又不安全。显然,它不适合配电网自动化。

本文介绍了配电网故障线路识别和故障区段定位的信号注入原理。它可以用于各种接地中性配电系统,不受TA数量的限制,因为它不需要来自TA的信号。设备基于原理进行了详细描述,并在本文中报道了现场经验。

1故障诊断系统中注入诊断信号的方法

所开发的方法通过检测人为注入的诊断信号的轨迹来识别故障线并定位单个相对地故障的故障部分,该信号在故障发生后被注入故障电力系统。可能有许多方法可以注入诊断信号。其中三个进行了如下分析。

1.1通过故障相电压互感器注入诊断信号

通过故障相电压互感器(TV)注入诊断信号的方法如图1所示。

图1通过TV注入信号

假设在馈线的A相上发生SPGF故障,那么A相的电压将下降到0,并且TV的A相的初级线圈由于故障而超前。因此在其次级线圈中不会出现感应电压。也就是说故障阶段PT暂时处于空闲状态。其他两个非故障阶段B和C的电压将增加到其原始值的倍。因此,TV的B和C相的二次电压将增加到100 V.

如上所述,可以根据TV的二次电压的变化来区分A相。现在,诊断电流信号被注入到TV的A相的次级线圈中,如图1中的虚线(1)所示。必须被引入电视的初级侧,并在电视初级侧的中性点和故障点之间形成电流回路,如虚线(2)。注入的诊断电流不能进入非故障阶段和非故障线路,因为缺乏闭合电流回路。此外,在多分支分配系统中,诊断电流仅馈入故障分支。

1.2通过消弧线圈注入诊断信号

在用消弧线圈(ASC)接地的配电系统的情况下,诊断信号可以通过ASC注入系统,如图2所示。信号发生器通过带连接到ASC的次级侧 - 滤波器对诊断信号具有低阻抗,对工频电流具有高阻抗。它使注入信号很容易通过。同时,它可以防止工频电压施加到信号发生器上 [9]。

信号发生器(SG)在正常情况下不工作,因此信号不会注入系统。当发生SPGF时,将检测到零序电压,然后信号发生器开始工作。它会产生一个 ASC次级侧的信号电流如图2中的虚线(1)所示。电流被感应到ASC的初级侧,并使其环路如图2中的虚线(2)所示。

图2通过ASC注入信号

1.3用Y连接电容器组中性点注入诊断信号

图3显示了通过Y连接电容器组的中性点注入诊断信号的方法。

图3 Y型电容器组中性点注入信号

当配电系统正常工作时,变电站母线上的三相对地电压是对称的。因此,电容器组中的三相电流也是对称的,因为三个支路的电容是相同的。信号发生器不会产生。在这种情况下,诊断信号。当SPGF发生时,SPGF检测电路将根据电容器组中电流的变化而动作,并激活信号发生器。发生器产生信号电流作为图3中的虚线(1),并将感应电流到初级分心,布设系统,如图3中的虚线(2)。

Y接电容组的功能是测量相电压,它具有与传统电磁式电压互感器相同的功能,但能防止系统发生铁磁共振。

2注入信号的选择

为了选择注入信号,主要考虑以下因素。

(1)注入信号的强度远小于电力系统任何固有信号的强度,因此注入信号应该具有不同于电力系统固有信号的特性,以避免被电力系统固有信号淹没和增加。根据检测的信噪比,选择基频介于倍和倍工频之间的注入信号,即:

(1)

(2)注入信号用于故障线路的识别和故障部位的定位,工频信号及其整数谐波是不希望的信号,应予以滤除,为了方便地滤除这些分量,信号处理系统的采样频率应为工频的整数倍,即:

(2)

其中,是正整数,因此差分滤波器公式的实现将在稳态中滤除这些工频和整数谐波。

(3)为了便于注入信号的处理和计算,采样频率也应该是信号频率的整数倍,即:

(3)

其中是正整数,因此利用数字滤波器和傅里叶算法处理注入信号是方便的。

例如,如果选择,,,则注入信号频率介于基波和二次谐波之间,基波周期中的采样点数目为,注入信号周期中的采样点数目为,因此采样频率为,注入信号频率为。

3注入信号的检测与处理

3.1注入信号检测

注入诊断信号只能从故障馈线出口流到故障点,如本文第2节所述,通过检测各馈线出口处的注入信号可以识别故障线路,通过跟踪故障点的路径可以定位故障点。已经发展了两种方法来检测或跟踪注入信号。在零序电流互感器或零序电流合成器已经配备成对馈线的三相电流进行总计以获得零序电流的情况下,可以检测注入信号。在TA或合成器的次级侧。在已经安装了非零序列TA或合成器的情况下,使用专用的无线信号检测器。无线信号检测器如图4所示。

图4无线信号检测仪示意图

3.2注入信号处理

3.2.1注入信号的模拟预处理

由于输入到检测装置的信号非常微弱,并且注入信号的强度比电力系统固有信号的强度弱得多,所以直接数字处理检测器中的注入信号可能非常困难。为了放大有用信号,提高信噪比,对注入信号进行模拟带通滤波,经过模拟预处理后,将检测信号送入数据采集单元,转换成数字信号,然后在微处理器上进行处理。

3.2.2数字滤波器

通过差分滤波器对所获取的数字信号进行滤波,

(4)

差动滤波器可以滤除输入诊断信号计算中所有噪声信号的工频量及其整数次谐波,其幅频特性如图5所示。数量及其整数次谐波均为零。

图5差分滤波器的频率响应

对于注入信号,其频率在倍和倍工频之间,滤波器的响应不能为零,输出的幅度取决于频率。(1)至(3)注入信号频率为工频的倍,滤波后注入信号的幅值将变为原始幅值的倍。

3.2.3检测诊断信号的计算

输出数字信号经等式(4)滤波后,主要由注入的诊断信号组成,采用傅里叶算法计算信号的幅值,并用于故障线路的识别和故障区间的定位。

4故障线路识别

如上所述,注入电流仅在故障线路中流动,在非故障线路中不会出现,因此可以通过检测所有出口线路中的注入信号来方便地识别故障线路。

图6示出了线路识别装置,其通过TV注入诊断信号并通过无线信号检测器进行检测。当SPGF发生故障时,每个检测器检测到相应线路中的诊断电流。所有检测器的测量结果被发送到通信,通过比较结果可以确定主线和故障线。对应于具有最大输出的检测器的线必须是故障线。

图6自动选线原理

5故障定位方法

如上所述,诊断电流只能在注入点和故障点之间流动,也就是说,诊断电流从故障点返回注入点,在非故障线路、故障线路的非故障分支和故障区段中不能检测到注入信号。通过检测沿故障线的诊断电流,寻找诊断电流的消失点,可以定位故障点。

设计了一种基于注入诊断信号路径跟踪原理的故障区段自动定位装置,如图7。所示,S1-S7为分段开关或分段开关,D1-D7为信号检测器,L1-L7为这些探测器。

在每个开关点安装检测器。当SPGF故障发生时,例如在L5部分,信号发生器将向故障线路注入诊断信号。故障回路上的检测器,即检测器D1、D2和D5,将响应该信号,而其它检测器将没有响应。检测器将它们的检测结果发送到故障定位计算机,并且故障区段将通过计算机上的故障定位算法来确定[10]。

图7配电网分支线路图

6结论

针对非有效接地配电系统单相接地故障,提出一种新的故障线路识别和故障区段定位方法,该方法通过检测人工注入的专用诊断信号来识别故障线路,并定位故障区段。分析了不同于电力系统中任何固有信号的电流信号的注入和检测方法,开发了一套基于该方法的故障线路识别和故障区段定位装置,并应用于实际电力系统。这些设备的实际运行经验证明了该方法的可行性和有效性。

参考文献:

[1]姚欢年,曹梅月.电力系统谐振接地[M].中国电力出版社,北京,2000.

[2]Griffel D.关于中压网络安全和质量的新协议[J].IEEE电力传输协议,1997,12(4):1428-1433.

[3]薛永端,徐冰吟.非固体接地网零序暂态直接接地故障保护原理[J].中国电机工程学报,2003,23(7):51-56.

[4]张帆,潘振群,张惠芬.基于零序暂态电流最大值的非固网故障选线新判据[J].电力系统自动化,2006,3(4):45-48.

[5]高红良,杨学强.配电线路线路接地故障测距算法[J].清华大学学报,1999,39(9):33-36.

[6]Baldwin T,Jr Renovich F,Saunders L F等.不接地和高电阻接地系统的故障定位[J].工业应用电子工程师学会,2001,37(4):1152-1159.

[7]孙亚明,严斌.一种基于非故障相暂态电流的单相接地故障测距新方法[J].电力系统技术,2004,28(9):55-59.

[8]桑载忠,潘振群.小电流中性点接地系统单相接地故障线路识别、故障测距和故障定位的新方法[J].电力技术,1997,21(10):50-55.

[9]潘振群.非有效接地系统消弧线圈自动调谐与地面故障检测研究[D].山东大学电气工程学院,济南,中国,2006.

[10]张惠芬,配电网接地故障检测技术研究[D].山东大学电气工程学院,济南,中国,2006.

剩余内容已隐藏,支付完成后下载完整资料


资料编号:[18292],资料为PDF文档或Word文档,PDF文档可免费转换为Word

原文和译文剩余内容已隐藏,您需要先支付 30元 才能查看原文和译文全部内容!立即支付

以上是毕业论文外文翻译,课题毕业论文、任务书、文献综述、开题报告、程序设计、图纸设计等资料可联系客服协助查找。